A Novel Dynamic Power Cutoff Technology (dpct) for Active Leakage Reduction in Deep Submicron Vlsi Cmos Circuits

نویسندگان

  • BAOZHEN YU
  • Michael L. Bushnell
  • Baozhen Yu
چکیده

OF THE DISSERTATION A Novel Dynamic Power Cutoff Technology (DPCT) for Active Leakage Reduction in Deep Submicron VLSI CMOS Circuits by Baozhen Yu Dissertation Director: Prof. Michael L. Bushnell Due to the exponential increase of subthreshold and gate leakage currents with technology scaling, leakage power is increasingly significant in CMOS circuits as the technology scales down. The leakage power is as much as 50% of the total power in the 90nm technology and is becoming dominant in more advanced CMOS technologies with smaller feature sizes. Also, the leakage in active mode is significantly larger due to the higher die temperature in active mode. Although many leakage reduction techniques have been proposed, most of them can only reduce the circuit leakage power in standby mode. In this thesis, we present a novel active leakage power reduction technique using dynamic power cutoff, called the dynamic power cutoff technique (DPCT). To reduce the active leakage power, we target the idle part of the circuit when it is in active mode. First, the switching window for each gate, during which a gate makes its transitions, is identified by static timing analysis. Then, the circuit is optimally partitioned into different groups based on the minimal switching window (MSW) of each gate. Finally, power cutoff transistors are inserted into each group to control the power connections of that group. The power of each gate is only turned on during a small timing window within each clock cycle, which results in significant active leakage power savings. Standby leakage can also be reduced by turning off the power connections of all gates all of the time once the circuit is idle. This technique also reduces dynamic power and short-circuit power by reducing the circuit glitches. Experimental results on ISCAS ’85 benchmark circuits at the logic level modeled using

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Low Leakage SRAM Acrhitectures using CMOS VLSI Circuits in Different Technology Environment

There is a demand for portable devices like mobiles and laptops etc. and their long battery life. For high integrity CMOS VLSI circuit design in deep submicron regime, feature size is reduced according to the improved technology. Reduced feature size devices need low power for their operation. Reduced power supply, reduces the threshold voltage of the device. Low threshold devices have improved...

متن کامل

Ip-sram Architecture at Deep Submicron Cmos Technology – a Low Power Design

The growing demand for high density VLSI circuits the leakage current on the oxide thickness is becoming a major challenge in deep-sub-micron CMOS technology. In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip‟s total power consumption. Motivated by emerging battery-operated application on one hand and shrinking techn...

متن کامل

Leakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design

Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance ...

متن کامل

Design and Analysis of a Novel Low-Power SRAM Bit-Cell Structure at Deep-Sub-Micron CMOS Technology for Mobile Multimedia Applications

The growing demand for high density VLSI circuits and the exponential dependency of the leakage current on the oxide thickness is becoming a major challenge in deep-submicron CMOS technology. In this work, a novel Static Random Access Memory (SRAM) Cell is proposed targeting to reduce the overall power requirements, i.e., dynamic and standby power in the existing dual-bit-line architecture. The...

متن کامل

A Power-Gating Scheme to Reduce Leakage Power for P-type Adiabatic Logic Circuits

With rapid technology scaling, the proportion of the static power consumption catches up with dynamic power consumption gradually. To decrease leakage consumption is becoming more and more important in low-power design. This paper presents a power-gating scheme for P-DTGAL (p-type dual transmission gate adiabatic logic) circuits to reduce leakage power dissipations under deep submicron process....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007